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TABLE 1
Z mm 0 0.002 {0.004 [0.005 [0.01]0.02]0.03{0,04 [0.05 0.1] 0.5 1 | 1.5{ 2 3
Real 67 (z) |33 2 |16 10 |6 2.3 |1.25{0.75 0.5 0.2 jo.2 lo.2 {0.2 lo.2 0.2
(ohm.m)™"
Initial 6-(z)| 35 32 130 21 |22 |13 8 14.75| 4 j0.4 [0.4 f0.4 (0.4 (0.4 [0.4
(ohm.m)™"
Reached 6(z)[33.2}26.2| 16.5 | 11 ] 6.52.5 ]1.250.75 0.5 [0.25 [0.22 {0.21(0.22 [0.22 |0.22
(ohm.m)™"

realized after one cycle. For the real pulsating €/(z) a solution
S,(2) is reached after four iterations.

Example 3

Table I illustrates the application of the gradient technique for
obtaining the conductivity profile of a lossy semiconductor which
has €(z)=12— Z/L and unknown inhomogeneous o(z). The
layer thickness is 3 mm, N =16, and the frequency is 10 GHz.
From the table it is clear that the obtained o,(z) distribution is
very close to the real one. The only limitation, on solving for
semiconductors having high parameter values, is to optimize the
layer thickness by

A/4<L<A/2
where A is the average wavelength in the tested sample. This

limitation ensures that variations in the measured reflection
coefficients are due to load variations.

VL

It is clear from the above numerical experiments that the
iterative technique of the FGM is very efficient in determining
the inhomogeneous profile of the complex dielectric constant of
materials. The functional reaches its global minimum in a finite
number of iterative cycles and the final solution obtained is
unique and independent of the initial guess. One need not have
a priori information about the medium, but only information
about the maximum and minimum values of the desired function.
The FGM does not have restrictions on the initial solution and it
is applicable with good approximations to discontinuous func-
tions. The number of measurements N must be sufficient to give
true information about the probed medium, and optimum N is
given by 20 > N >12. All the N measurements are carried out at
a single frequency. The frequency error (Af) must not exceed 5
percent. At 36.524 GHz (for a medium which has an average
€(z)=12 and o(z)=95), Af =16 percent will cause errors in
the evaluated reflection coefficients; AR = +3.5 percent and
AQ = +8.477 percent. The corresponding errors in the recon-
structed €'(z) and o(z) are +4.55 percent and +8.3 percent,
respectively. These error values will differ for different materials.

DiscussioN AND CONCLUSIONS

'
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Transmission Properties of a Right-Angle Microstrip
Bend with and Without a Miter

ANTONIOS D. BROUMAS, HAO LING, MEMBER, IEEE, AND
TATSUO ITOH, FELLOW, IEEE

Abstract —Based on the waveguide model, the transmission properties of
a microstrip bend with and without a miter are investigated using the
Green’s theorem approach. Unlike the conventional mode-matching tech-
nique, this approach does not require a modal description of fields inside
the discontinuity region. Scattering parameters for the bend are presented.
They agree well with the qﬁasi—static results at low frequencies. Significant
improvement in the transmission properties is observed for the bend with a
miter.

I. INTRODUCTION

A right-angle microstrip bend is one of the most common
discontinuities encountered in microstrip-based integrated cir-
cuits. It is normally used to provide flexibility in circuit layout.
Accurate characterization of the transmission properties of a
microstrip bend therefore plays an important role in the success-

Manuscript received Junc 6, 1988; revised November 21. 1988 This work
was supported by the National Science Foundation under Grant ECS-8657524
and by the Army Research Office under Contract DAAL 03-88-K-0005.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Texas at Austin, Austin, TX 78712

IEEE Log Number 8§926578.

0018-9480,/89 /0500-0925%01.00 ©1989 IEEE



926 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 5, MaY 1989

e
A D
a RVAVA (N 3
LVAVAN
l gr.:)~_c_’z
(2)
—a—
(a)
X
A
T AVAVA S
a n
l L VAVAN yl o (3) )
B c

«— 8 —

(b)

Top view of the right-angle microstrip bend. (a) Without miter.
(b) With miter.

Fig. 1.

ful implementation of computer-aided design tools, especially in
the higher frequency regimes.

The microstrip waveguide model has been applied extensively
to various microstrip discontinuities such as T junctions, cross-
ings, and steps [11-[3]. In terms of the frequency range of
applicability, the waveguide model provides an “intermediate”
solution which surpasses the accuracy of the quasi-static analysis
and provides accurate magnitude information on the scattering
parameters. In this paper, a right-angle microstrip bend is charac-
terized based on the waveguide model. In addition, the effect of a
45° ‘miter at the outer portion of the right-angle bend is investi-
gated. The geometries of the bend without a miter and the bend
with a miter are shown in Figs. 1(a) and (b), respectively.

" Our approach to the microstrip bend problem will not be the
conventional mode-matching technique discussed in detail in
[11-[5]. Instead, a Green’s theorem approach first suggested by
Whitehead [6] and later utilized by Itoh and Mittra [7] in the
analysis of grating structures will be applied to the waveguide
discontinuity problem at hand. The premise of this approach is
based on the observation that often the actual fields inside the
discontinuity region are of no interest to us. Therefore, it is
highly undesirable having to first determine the complicated
modal description of the fields in the discontinuity region, such
as region (3) in Fig. 1(b). The technique we will adopt is based on
an elegant application of the Green’s theorem [8] which allows us
to relate modes on the two sides of the discontinuity without
actually calculating the fields inside the discontinuity region. By
properly choosing a set of auxiliary functions which satisfy the
source-free wave equation, a matrix equation similar to that
resulting from the mode-matching technique can be obtained.

(®

Fig. 2. Waveguide model for the microstrip line.

II. FORMULATION

Referring to Fig. 2(a), the microstrip line is modeled as a
waveguide with perfect magnetic conducting (PMC) sidewalls as
shown in Fig. 2(b). The thickness of the dielectric (4) should be
less than the width of the strip (W). The smaller the 4 the more
accurate the waveguide model. In order to take into account the
fringe field, an effective width, «a, and an effective dielectric
constant, ¢, are introduced. For the selection of a and e, see
[9]-[11].

In the waveguide of Fig. 2(b), a TEM mode can be supported.
The frequency ¢/2a, where ¢ is the speed of light in e,
corresponds to the cutoff frequency of the first non-TEM mode.
Since both the incidence field of interest and the geometry of the
structure are independent of y, we expect that in the neighbor-
hood of the discontinuity only modes which are independent of y
will be excited. As we can see by a simple inspection of TE, ,
and TM,,, modes, the only such modes are the TE,, modes,
m=0,1,2,---, where TEy, is the TEM mode. Therefore, in
region (1) the fields can be expanded as follows:

E (x,z2) = (Cé+ ek Lo e*j’”)

o0
+ Y (G e i+ Gl et ) cos( mmc)
m=1

; N
Hxl(x, Z) = (— C&* e ke o C&— eﬂk;) e

x
+ Z (_ C;I‘F e Ym? L C,}; e+7,,,z)éyﬂ COS( mwx)
m=1 JWR a
o0
Hy(x.z)= ) (CremiqCletms) -
m=1
,Ym sin( m'nx) (1)
jwpa a
where v, =[(mn/a)* —k*1'?, k=w/c, and e=e¢¢, The
square root for v, is to be taken as positive for both real and
imaginary cases. Similarly in region (2), using a rotation of
coordinates, we can write

2+ +jkx T . mmwz
EVZ('XJ Z) = Q) em/M 4 Z Cm e Tt .COS
m=1

" .

L WE x Y, mmz
H,(x,z)=C}" e*-’”7 + Y et cos( )
' =1 Jop a

o mm maz
Ho(x.2)= ¥ G e 20, )
: me1 Jjwpa a

Note that the problem becomes in fact a two-dimensional one
after the elimination of the y-dependent modes. Although the
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Fig. 3. Conceptual motivation for selecting the auxiliary function G in solv-

ing the microstrip bend problem with a miter.

TEM mode is of most interest, we have kept the formulation
general enough to handle any combination of TE, , modes as the
incident excitation.

Next we observe that a unique solution for the fields in region
(3) must exist. It matches with the fields in regions (1) and (2) on
the surfaces (4B X k) and (BC X h) and obeys the boundary
condition on the PMC walls (CD X k) and (DA X h), or (CA X k)
in the case of a miter. Also it is sufficient to work with only one
field component. The E, component will be used implicitly in
order to obtain a sufficient number of equations relating CL*,
CL~, and C2'. These equations are obtained by applying the
scalar version of the Green’s theorem [8] which states that

JE, 4G

fS(G o Ey)ds 0. (3)
Here G and E, are functions obeying the source-free wave
equation in a region enclosed by surface § with an outward
pointing normal 7. In our case, E, satisfies the source-free wave
equation (V2 + kz)Ey = 0 in region (3). Furthermore, 9E, /dn =
0 on the PMC walls. Therefore, if we select an auxiliary function
G such that

aG
— =0 onthe PMC walls (4)

(vi+k*)G=0 and
an

equation (3) becomes
JE, G P
f a(-z) a(-z2) Ey | dx

JE, G J

fsc(ca(—x) a(—x) )% O
This equation in fact relates the coefficients C.*, C~, and C2™.
Clearly we obtain only one equation by using the Green’s theo-
rem once. Therefore, by selecting a set of auxiliary functions
which satisfy (4) and by applying (5) repeatedly, we obtain a
sufficient number of equations to solve for C,~ and C2*. In
general there is no formal methodology for selecting a family of
auxiliary functions. The special geometry of each problem has to
be considered. In this regard, the auxiliary function plays a role
similar to that of the testing function in the method of moments.

A. Microstrip Bend Without Miter
We select as the auxiliary functions

Gpl(x,2) = (e +e™v? )cos(pzx)

B . pmz
Gp2(x,z)=(e ¥ et )COS(_a ), p=0,1,2,---
(6)

= jk.)
G, and G, in place of

where v, is given by the same formula as v,,. (Clearly v,
Applying repeatedly equation (5) using

G, we obtain a sufficient number of equations to solve for C5~
and C2*. The equations can be cast into a (2M X2M) matrix
equation where M is the number of modes to be used in each

region:
I:[A]I [B]] [[91[_]_}= _____ @
[B]) [ [ [T |[Rs,]
In the above expression, [CL], [C2* ], [RS,], and [RS,,] are
(M X1) column vectors; [A] and [B] are M X M matrices. The

¢elements in the matrix equation are given below:

4 = ——ypaeb“ep, p=m
pm

0, pEmM

a. vz mmz
Bpm=cos(pvr)(——ym)f (e 4 e )cos( ; )a’z

RS, v, ae” %9 CH

P P

=cox(pm) £ (~x)

a max
. / (7w + et ) cos( ) dx|CL* (8)
0
where ¢, =1 for k+ 0 and ¢, =2 for k=0.
B. Microstrip Bend with 45° Miter Cut
The auxiliary function G in this case is selected as

Gu(x,2) =cos[(p—:)(x+ z)] WXt DNE

T
G,o(x,2) = cos [(%)(x + z)] et (—FEDN2
p=0’1,2’... (9)

where y, =\2( pn/a)*— k*. Our selection is motivated by the
»

fact that the problem in Fig. 1(b) is the limiting case of the
problem in Fig. 3 as  — 0. This choice of G leads to a matrix
equation of the same form as (7). With the same notation in
subsection A, we have ’

a TX mmx
Am=(_Ym_—Yp_)/ cos(p——) Y!*)‘/‘/—cos( )dx
7 V2 1 a a
a max TX
+(—p—)f cos( )sin(p )e*p‘/‘/_dx
a 0 a a

y 772 maz
B,,.= ( —= )/acos(p ‘YPZ/‘/Z_cos( )dx
? V2 1Yo a

iy AR

RS, = c1+ [
a mmx
f cos(p—‘) e*ﬁx/‘/_cos( ) dx
0 a
7 mmx
+p—facos( )sm(p )eﬁ"/‘/_dx]
a Jo \ a a

M1
Y, a pPTX
RS,= 2. G7 [(—Ym——p) cos( )e‘?p"/ﬁ
»2 m2=0 \/5 ’/(; a
mmwx T ra max
-cos( )dx+P—f cos( )
a ay a

TX
-sin( ) e‘*r"/‘/z_dx].
a

(10)
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Fig. 4. Scattering parameters of a right-angle microstrip bend without miter
versus the effective width of the microstrip 1n wavelengths. (¢ and > are
the quasi-static results from [12].) (a) Amplitude. (b) Phase

To summarize, choices for the auxiliary functions given in (6)
and (9) lead to a matrix equation of the form given in (7) for a
bend with or without a miter. The scattering parameters charac-
terizing the bend are easily obtained by solving the matrix
equation.

III. NUMERICAL RESULTS

Shown in Fig. 4(a) are the amplitudes of the scattering parame-
ters §;; and §,, versus the effective width in wavelengths, a /A,
for the right-angle microstrip bend without a miter. In the
numerical calculation, three to four modes are satisfactory for
achieving convergent results. The energy corservation criterion
was checked and found to be satisfied at all frequencies up to
a/A=1. Note that above a/A=0.5, both the TE,, and the
TEM mode can propagate in the waveguide model. In the a /A <
0.5 region, the reflection coefficient S, increases monotonically
as a function of frequency. Also plotted in the figure are the
quasi-static results reported in [12]. As expected, the quasi-static
results agree well with our data at low frequencies. Fig. 4(b)
shows the phase of the scattering parameters S;; and S,,.

In Fig. 5, the amplitude and the phase of the scattering
parameters for the microstrip bend with a miter are shown as
functions of a/A. For a/A <0.5, the numerical results again
converge nicely with only three to four modes and energy conser-
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Fig. 5. Scattering parameters of a right-angle mucrostrip bend with a 45°

miter versus the effective width of the mucrostrip in wavelengths. (a) Ampl-
tude. (b) Phase.

vation is satisfied. This feature does not remain valid for a /A >
0.5. We believe this defect to be strongly related to the set of
auxiliary functions we have chosen. Additional constraints such
as edge conditions may need to be imposed on the auxiliary
functions, in addition to those stated in (4), in order to achieve
better numerical stability.

Finally, by comparing Figs. 4(a) and 5(a), we observe that the
transmission properties of the bend with a miter are much
superior to those of the bend without a miter. This is especially
apparent at the high-frequency end.

IV. CoNCLUSIONS

The Green’s theorem approach has been applied to the prob-
lem of a right-angle microstrip bend with or without a miter. The
microstrip waveguide model is assumed in the analysis. Unlike
the mode-matching technique, this approach does not require a
complete modal description of fields inside a discontinuity re-
gion. Instead, the fields on the two sides of the discontinuity are
related by applying the Green’s theorem with an appropriate
choice of an auxiliary function which plays a role analogous to
that of the testing function in the method of moments. The
selection of the auxiliary function is not systematic and involves
good physical insight to the problem under study.
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The numerical results we have generated show that the trans-
mission properties of the bend are significantly improved with a
miter cut at the corner. By themselves, our results provide an
accuracy check for the more sophisticated integral equation ap-
proach whichi can handle arbitrarily shaped boundaries. More-
over, with a slight modification, this technique may be extended
to study microstrip corners with an arbitrary miter.
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The Use of a Single Source to Drive a Binary Peak
Power Multiplier

P. E. LATHAM, MEMBER, IEEE

Abstract —The binary power multiplier (BPM) recently proposed by
Farkas [1] requires a pair of RF inputs whose phases are set independently.
In this note, a method is presented in which a single source may be used to
drive a BPM. Phase coding occurs at the source input, where the power is
low and phase switching is straightforward. There is a loss in energy of
around 25 percent but only a small reduction in peak power.

1. INTRODUCTION

Future TeV linear colliders require sources producing peak
power in the 100 MW range. The exact power level depends on
frequency, but present estimates are around 750 MW at 2.8 GHz
[1]1 (SLAC frequency), 500 MW at 10 GHz [2], and 200 MW at 17
GHz [3]. When additional constraints such as high efficiency,
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Fig 1. (a) Coding for a single-stage binary power multiplier The time bins
are coded according to phase — represents 0° and + represents 180°. On
output, the pulse length is halved and the power doubled (b) Schematic of a
single-stage BPM.

high gain, and phase stability are introduced. these powers are
beyond the state of the art of present and near-future sources. To
circumvent the lack of suitable sources, pulse compression may
be used to increase peak power at the expense of pulse length,
thus reducing the requirements to technologically feasible levels.

Recently, Farkas proposed an efficient multiple-stage pulse
compression scheme [1] in which the power is doubled and the
pulse length halved at each stage. The scheme is described in
detail in [1]. Briefly, a single stage of the binary power multiplier
(BPM) works as follows: the input into each stage consists of two
pulse trains coded into time bins, with a phase of either 0° or
180° in each bin. The pulse trains are combined to produce two
outputs, each at twice the power and half the duration and
properly coded for the next stage. The coding for this process is
illustrated schematica,ﬂy in Fig. 1(a), where a phase of 0° is
denoted by a — and a phase of 180° by a +. The power
doubling, which is shown in Fig. 1(b), occurs in two steps. First,
adjacent bins are combined by a 3 dB hybrid coupler according
to the rules given in [1]. Second, the leading pulse is delayed so
that the bins are again adjacent. The peak power multiplication is
2" for an n-stage device, less any losses due to nonideal prop-
erties.

This pulse compression scheme has been demonstrated at low
power using both fundamental mode rectangular and TE, circu-
lar waveguide [3]. While the basic validity of the binary pulse
multiplication scheme was confirmed, the losses were high (greater
than 40 percent power loss for the two-stage BPM). For practical
applications, delay lines with acceptable wall losses and 3 dB
hybrid couplers with minimal mode conversion and reflection
need to be designed. In addition, problems of phase noise need to
be studied, as the BPM efficiency degrades rapidly with phase
jitter.

Because of the high power involved, the coding of the pair of
pulses trains which enters the BPM must occur at the input end
of the source, where the power is low. Consequently, two separate
sources are needed to drive a single BPM if it is to operate at
maximum efficiency. For testing and development, however, it is
desirable to use a single source. This may be done with some
decrease in energy efficiency (less than 30 percent) but little loss
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