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realized after one cycle. For the real pulsating cj(z) a solution conwxate gradient method for the solution of electromagnehc radmtion

S~(z) is reached after four iterations. - - “

Example 3

Table I illustrates the application of the gradient technique for

obtaining the conductivity profile of a lossy semiconductor which

has c’(z) =12 - Z/L and unknown inhomogeneous u(z). The

layer thickness is 3 mm, N =16, and the frequency is 10 GHz.

From the table it is clear that the obtained Ul(z) distribution is

very close to the real one. The only limitation, on solving for

semiconductors having high parameter values, is to optimize the

layer thickness by

~/4<L<~/2

where ~ is the average wavelength in the tested sample. This

limitation ensures that variations in the measured reflection

coefficients are due to load variations,

VI. DISCUSSION AND CONCLUSIONS

It is clear from the above numerical experiments that the

iterative technique of the FGM is very efficient in determining

the inhomogeneous profile of the complex dielectric constant of

materials. The functional reaches its global minimum in a finite

number of iterative cycles and the finaf solution obtained is

unique and independent of the initial guess. One need not have

a priori information about the medium, but only information

about the maximum and minimum values of the desired function.

The FGM does not have restrictions on the initial solution and it

is applicable with good approximations to discontinuous func-

tions. The number of measurements N must be sufficient to give

true information about the probed medium, and optimum N is

given by 20> N >12. All the N measurements are carried out at

a single frequency. The frequency error (A~) must not exceed 5

percent. At 36.524 GHz (for a medium which has an average

c’(z) =12 and u(z) = 5), Af = + 6 percent will cause errors in

the evaluated reflection coefficients; AR= t 3.5 percent and

AQ = + 8.477 percent. The corresponding errors in the recon-

structed c’(z) and u(z) are +4.55 percent and + 8.3 percent,

respectively. These error values will differ for different materials.
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Transmission Properties of a Right-Angle Microstrip

Bend fiith and Without a Miter

ANTONIOS D. BRQUMAS, HAO LING, MEMBER. IEEE, AND

TATSUO ITOH, FELLOW, IEEE

Abstract —Based on the waveguide model, the transmission properties of

a microstrip bend with and without a miter are investigated using the

Green’s theorem approach: Unlike the conventional mode-matching tech-

nique, this approach does not require a modal description of fields inside

the discontinuity region. Scattering parameters for the bend are preseoted.

They agree well with the quasi-static results at low frequencies. Significant

improvement in the transmission properties is observed for the bend with a

miter.

I. INTRODUCTION

A right-angle micro:trip bend is one of the most common

discontinuities encountered in microstrip-based integrated cir-

cuits. It is normally used to provide flexibility in circuit layout.

Accurate characterization of the transmission properties of a

microstrip bend therefore plays an important role in the success-
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Fig. 1. Top view of the right-angle microstrip bend. (a) Without miter.

(b) With miter.

ful implementation of computer-aided design tools, especially in

the higher frequency regimes.

The microstrip waveguide model has been applied extensively

to various microstrip discontinuities such as T junctions, cross-

ings, and steps [1]–[3]. In terms of the frequency range of

applicability, the waveguide model provides an “intermediate”

solution which surpasses the accuracy of the quasi-static analysis

and provides accurate magnitude information on the scattering

parameters. In this paper, a right-angle microstrip bend is charac-

terized based on the waveguide model. In addition, the effect of a

450 miter at the outer portion of the right-angle bend is investi-

gated. The geometries of the bend without a miter and the bend

with a miter are shown in Figs. l(a) and (b), respectively.

Our approach to the microstnp bend problem will not be the

conventional mode-matching technique discussed in detail in

[1]-[5]. Instead, a Green’s theorem approach first suggested by

Whitehead [6] and later utilized by Itoh and Mittra [7] in the

analysis of grating structures will be applied to the waveguide

discontinuity problem at hand. The premise of this approach is

based on the observation that often the actual fields inside the

discontinuity region are of no interest to us. Therefore, it is

highly undesirable having to first determine the complicated

modal description of the fields in the discontinuity region, such

as region (3) in Fig. l(b). The technique we will adopt is based on

an elegant application of the Green’s theorem [8] which allows us

to relate modes on the two sides of the discontinuity without

actually calculating the fields inside the discontinuity region. By

properly choosing a set of auxiliary functions which satisfy the

source-free wave equation, a matrix equation similar to that

resulting from the mode-matching technique can be obtained.

(a)

(b)

Fig. 2. Waveguide model for the microstrip line.

II. FORMULATION

Referring to Fig. 2(a), the microstrip line is modeled as a

waveguide with perfect magnetic conducting (PMC) sidewalls as

shown in Fig. 2(b). The thickness of the dielectric (h) should be

less than the width of the strip (W). The smalIer the h the more

accurate the waveguide model. In order to take into account the

fringe field, an effective width, a, and an effective dielectric

constant, Ceff, are introduced. For the selection of a and ecff, see

[9]-[11].

In the waveguide of Fig. 2(b), a TEM mode can be supported.

The frequency c/2 u, where c is the speed of light in C,rf,

corresponds to the cutoff frequency of the first non-TEM mode.

Since both the incidence field of interest and the geometry of the

structure are independent of y, we expect that in the neighbor-

hood of the discontinuity only modes which are independent of y

will be excited. As we can see by a simple inspection of TE~,,,

and TMn,, modes, the only such modes are the TEmZO modes,

m = 0,1,2,. ... where TEOO is the TEM mode. Therefore, in

region (1) the fields can be expanded as follows:

EY1(x, z) = (C;+ e-~ ’<’+ C~- e+~~’)

cc

FZzl(x, z) = ~ (C~l+” e-yti’ + cl,– e+y.l;)
~=1

YIH [1
m TX

.— sin — (1)
jwpa u

where ym = [(mn/a)2 – k2]1/2, k = co/c, and c = C,ffco. The

square root for yfi, is to be taken as positive for both reaf and

imaginary cases. Similarly in region (2), using a rotation of

coordinates, we can write
m

i)

m vz
E,,2(x, z) =Cj+ e+lh’ + ~ Cn~+ e+ ’m’cos —

~=1 a

(2)

Note that the problem becomes in fact a two-dimensional one

after the elimination of the y-dependent modes. Although the
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Fig. 3. Conceptual motivation for selecting the auxiliary function G in solv-

ing the microstrip bend problem with a miter.

TEM mode is of most interest, we have kept the formulation
general enough to handle any combination of TE~O modes as the

incident excitation.

Next we observe that a unique solution for the fields in region

(3) must exist. It matches with the fields in regions (1) and (2) on

the surfaces (All x h) and (BC X h) and obeys the boundary

condition on the PMC walls (CD X h) and (DA X h), or (CA X h)

in the case of a miter. Also it is sufficient to work with only one

field component. The EY component will be used implicitly in

order to obtain a sufficient number of equations relating C;+,

C~–, and C;+. These equations are obtained by applying the

scalar version of the Green’s theorem [8] which states that

/( aEy aG
G—

an )–%EY ds=O.
s

(3)

Here G and EY are functions obeying the source-free wave

equation in a region enclosed by surface S with an outward

pointing normal 2. In our case, EY satisfies the source-free wave

equation (V 2 + k2 ) EY = O in region (3). Furthermore, 8EY/tl n =

O on the PMC walls. Therefore, if we select an auxiliary function

G such that

(V2+k2)G=0 and ~=0 onthe PMCwalls (4)

equation (3) becomes

L(%f%)”fi+’

This equation in fact relates the coefficients C~+, C:-, and C;+.

Clearly we obtain only one equation by using the Green’s theo-

rem once. Therefore, by selecting a set of auxiliary functions

which satisfy (4) and by applying (5) repeatedly, we obtain a

sufficient number of equations to solve for C:– and C: ~. In

general there is no formal methodology for selecting a family of

auxiliary functions. The special geometry of each problem has to

be considered. In this regard, the auxiliary function plays a role

similar to that of the testing function in the method of moments.

A. Microstrip Bend Without Miter

We select as the auxiliary functions

Gpl(x, z) = (e-’~z + e+ypz )CQs(:)

) F-3’GP2(x, z) = (e-ypx + e+ypx eos p=o,l,2, -..

(6)

where yP is given by the same formula as y~. (ClearlY YO= jk.)

Applying repeatedly equation (5) using GPI and GP2 in place of

G, we obtain a sufficient number of equations to solve for C~-
~d cz + The equations Cm be cast into a (2M X 2 M) matti

equati% “where M is the number of modes to be used in each

retion:

In the above expression, [C:], [C;+], [ RSP1], and [RSP2 ] are

(M X 1) column vectors; [A] and [B] are M X M matrices. The

elements in the matrix equation are given below:

A
{

– ypaeypa CP, p.~
pm= o

7 p+m

BP~ = cos(pr)( – y~)~a(e-Y7’ + e+YPz cos
o ) F%)dz

RSP1 = – ypae-~pa Cjicp

RSp2=cos(pn) ~ (-y.)
~=1)

[J 01
. “(e-YPx + e+~px)cos !!!!!! dx c;, (8)

o a

where c~=lfork+Oandc~=2 fork=O.

B. Microstrip Bend with 45° Miter Cut

The auxiliary function G in this case is selected as

‘pl(xz)=cos[(:)(x+ z)le-’’x+z)z~’~

‘P,(xz)=cos[(:)(x+ z)le+y’(-x+z)fi

p=o,l,2, . . . (9)

where y, =~2(pn/a)2- k’ . Our selection is motivated by the

fact that the problem in Fig. l(b) is the limiting case of the

problem in Fig. 3 as 8 + O. This choice of G leads to a matrix

equation of the same form as (7). With the same notation in
.

subsection A, we have

()
p7rx

-sin — e
1

‘7P X/@ dx .
a

(lo)
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Fig. 4. Scattering parameters of a right-angle nucrostrip bend without nuter

versus the effective width of the nucrostrip m wavelengths. (+ and O are

the quasi-static results from [12].) (a) Amplitude. (b) Phase
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Fig. 5. Scattering parameters of a right-amgle nucrostrip bend with a 450
miter versus the effective width of the nncmstrip in wavelengths. (a) Ampll-
tude. (b) Phase.

To summarize, choices for the auxiliary functions given in (6)

and (9) lead to a matrix equation of the form given in (7) for a

bend with or without a miter. The scattering parameters charac-

terizing the bend are easily obtained by solving the matrix

equation.

III. NUMERICAL RESULTS

Shown in Fig. 4(a) are the amplitudes of the scattering parame-

ters Sll and &l versus the effective width in wavelengths, a/k,

for the right-angle microstrip bend without a miter. In the

numerical calculation, three to four modes are satisfactory for

achieving convergent results. The energy conservation criterion

was checked and found to be satisfied at all frequencies up to

a/~ =1. Note that above a/A = 0.5, both the TEIO and the

TEM mode can propagate in the waveguide model. In the a/A <

0.5 region, the reflection coefficient Sll increases monotonically

as a function of frequency. Also plotted in the figure are the

quasi-static results reported in [12]. As expected, the quasi-static

results agree well with our data at low frequencies. Fig. 4(b)

shows the phase of the scattering parameters Sll and Szl.

In Fig. 5, the amplitude and the phase of the scattering

parameters for the microstrip bend with a miter are shown as

functions of a/A. For a/X <0.5, the numerical results again

converge nicely with only three to four modes and energy conser-

vation is satisfied. This feature does not remain valid for a/k >

0.5. We believe this defect to be strongly related to the set of

auxiliary functions we have chosen. Additional constraints such

as edge conditions may need to be imposed on the auxiliary

functions, in addition to those stated in (4), in order to achieve

better numerical stability.

Finally, by comparing Figs. 4(a) and 5(a), we observe that the

transmission properties of the bend with a miter are much

superior to those of the bend without a miter. This is especially

apparent at the high-frequency end.

IV. CONCLUSIONS

The Green’s theorem approach has been applied to the prob-

lem of a right-angle microstnp bend with or without a miter. The

microstnp waveguide model is assumed in the analysis. Unlike

the mode-matching technique, this approach does not require a

complete modaf description of fields inside a discontinuity re-

gion. Instead, the fields on the two sides of the discontinuity are

related by applying the Green’s t~eorem with an appropriate

choice of an auxiliary function which plays a role analogous to

that of the testing function in the method of moments. The

selection of the auxiliary function is not systematic and involves

good physical insight to the problem under study.
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The numerical results we have generated show that the trans-

mission properties of the bend are significantly improved with a

initer cut at the corner. By themselves, our results provide an

accuracy check for the more sophisticated integral equation ap-

proach which can handle Ubitrarily shaped boundaries. More-

over, with a slight modification, this technique may be extended

to study microstrip corners with an arbitrary miter.
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The Use of a Single Source to Drive a Binary Peak

Power Multiplier

p. E. LATHAM, MEMBER, IEEE

Abstract —The binary power multiplier (BPM) recently proposed by

Farkas [1] requires a pair of RF inputs whose phases are set independently.

In this note, a method is presented in which a single source maybe used to

drive a BPM. Phase coding occurs at the source input, where the power is

low and phase switching is straightforward. There is a loss in energy of

around 25 percent but only a small reduction in peak power.

I. INTRODUCTION

Future TeV linear colliders require sources producing peak

power in the 100 MW range. The exact power level depends on

frequency, but present estimates are around 750 MW at 2.8 GHz

[1] (SLAC frequency), 500 MW at 10 GHz [2], and 200 MW at 17

GHz [3]. When additional constraints such as high efficiency,
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Fig 1. (a) Coding for a single-stage binary power multipher The time bms

are coded according to phase. – represents 0° and + represents 180°. On

output, the pulse length is halved and the power doubled (b) Schematic of a

single-stage BPM.

high gain, and phase stability are introduced. these powers are

beyond the state of the, art of present and near-future sources. To

circumvent the lack of suitable sources, pulse compression may

be used to increase peak power at the expense of pulse length,

thus reducing the req~rements to technologically feasible levels.

Recently, Farkas proposed an efficient multiple-stage pulse

compression scheme [1] in which the power is doubled and the

pulse length halved at each stage. The scheme is described in

detail in [1]. Briefly, a single stage of the binary power multiplier

(BPM) works as follows: the input into each stage consists of two

pulse trains coded intqr time bins, with a phase of either 0° or

180° in each bin. The pulse trains are combined to produce two

outputs, each at twice the power and half the duration and

properly coded for the: next stage. The coding for this process is

illustrated schematically in Fig. l(a), where a phase of 0° is

denoted by a – and a phase of 180° by a +. The power

doubling, which is shown in Fig. l(b), occurs in two steps. First,

adjacent bins are combined by a 3 dB hybrid coupler according

to the rules given in [1]. Second, the leading pulse is delayed so

that the bins are again adjacent. The peak power multiplication is

2“ for an n-stage device, less any losses due to nonideal prop-

erties.

This pulse compression scheme has been demonstrated at low

power using both fundamental mode rectangular and TEOl circu-

lar waveguide [3]. While the basic validity of the binary pulse

multiplication scheme was confirmed, the losses were high (greater

than 40 percent power loss for the two-stage BPM). For practicaf

applications, delay lines with acceptable wall losses and 3 dB

hybrid couplers with minimal mode conversion and reflection

need to be designed. In ‘addition, problems of phase noise need to

be studied, as the BPM efficiency degrades rapidly with phase

jitter.

Because of the high power involved, the coding of the pair of

pulses trains which enters the BPM must occur at the input end

of the source, where the power is low, Consequently, two separate

sources are needed to drive a single BPM if it is to operate at

maximum efficiency. For testing and development, however, it is

desirable to use a single source. This may be done with some

decrease in energy efficiency (less than 30 percent) but little loss
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